Given a set of candidate numbers ( C) and a target number ( T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set
2,3,6,7
and target 7
, A solution set is: [7]
[2, 2, 3]
[Thoughts]
This is a normal recursion question. For each candidate, add and verify the target. If it hit, add it as a part of solution.
[Code] 1: vector> combinationSum(vector &candidates, int target) { 2: // Start typing your C/C++ solution below 3: // DO NOT write int main() function 4: vector > result; 5: vector solution; 6: int sum=0; 7: std::sort(candidates.begin(), candidates.end()); 8: GetCombinations(candidates,sum, 0, target, solution, result); 9: return result; 10: } 11: void GetCombinations( 12: vector & candidates, 13: int& sum, 14: int level, 15: int target, 16: vector & solution, 17: vector >& result) 18: { 19: if(sum > target) return; 20: if(sum == target) 21: { 22: result.push_back(solution); 23: return; 24: } 25: for(int i =level; i< candidates.size(); i++) 26: { 27: sum+=candidates[i]; 28: solution.push_back(candidates[i]); 29: GetCombinations(candidates, sum, i, target, solution, result); 30: solution.pop_back(); 31: sum-=candidates[i]; 32: } 33: }